Neuroscience
A new study has revealed a way to alleviate the learning and memory deficits caused by the most important genetic risk factor for Alzheimer's disease, improving cognition to normal levels in aged mice. |
A new study from the Gladstone Institutes has demonstrated a new technique that may be effective in alleviating learning and memory deficits caused by apoE4, the most important genetic risk factor for Alzheimer’s disease, improving cognition to normal levels in aged mice.
Related articles |
"This is the first time transplantation of inhibitory neuron progenitors has been used in aged Alzheimer’s disease models." |
The success of the treatment in older mice, which corresponded to late adulthood in humans, is particularly important, as this would be the age that would be targeted were this method ever to be used therapeutically in people.
“This is a very important proof of concept study,” said senior author Yadong Huang, MD, PhD, an associate investigator at Gladstone Institutes and associate professor of neurology and pathology at UCSF. “The fact that we see a functional integration of these cells into the hippocampal circuitry and a complete rescue of learning and memory deficits in an aged model of Alzheimer’s disease is very exciting.”
In the current study, the researchers hoped that by grafting inhibitory neuron progenitors into the hippocampus of aged apoE4 mice, they would be able to combat these effects, replacing the lost cells and restoring normal function to the area. Remarkably, these new inhibitory neurons survived in the hippocampus, enhancing inhibitory signaling and rescuing impairments in learning and memory.
In addition, when these inhibitory progenitor cells were transplanted into apoE4 mice with an accumulation of amyloid beta, prior deficits were alleviated. However, the new inhibitory neurons did not affect amyloid beta levels, suggesting that the cognitive enhancement did not occur as a result of amyloid clearance, and amyloid did not impair the integration of the transplant.
According to Dr. Huang, the potential implications for these findings extend beyond the current methods used. “Stem cell therapy in humans is still a long way off. However, this study tells us that if there is any way we can enhance inhibitory neuron function in the hippocampus, like through the development of small molecule compounds, it may be beneficial for Alzheimer disease patients.”
SOURCE Gladstone Institutes
By 33rd Square | Embed |
0 comments:
Post a Comment