Researcher Identifies Bacteria That Produce Hydrogen in Extreme Situations

Tuesday, February 3, 2015

Researcher Identifies Bacteria That Produce Hydrogen in Extreme Situations

 Biotechnology
A bacterium that can produce hydrogen, an element that one day could lessen the world’s dependence on oil, has been discovered in Soap Lake, Washington.




Missouri University of Science and Technology researcher Dr. Melanie Mormile has discovered a bacterium that can produce hydrogen, an element that one day could lessen the world’s dependence on oil.

"Usually, I tend to study the overall microbial ecology of extreme environments, but this particular bacterium has caught my attention."


Mormile, professor of biological sciences at Missouri S&T, and her team discovered the bacterium Halanaerobium hydrogeninformans in Soap Lake, Washington. It can “produce hydrogen under saline and alkaline conditions in amounts that rival genetically modified organisms,” Mormile says.

Mormile’s findings were featured in Frontiers in Microbiology.

Halanaerobium hydrogeninformans

Related articles
“Usually, I tend to study the overall microbial ecology of extreme environments, but this particular bacterium has caught my attention,” Mormile says. “I intend to study this isolate in greater detail.”

Mormile, an expert in the microbial ecology of extreme environments, wasn’t searching for a bacterium that could produce hydrogen. Instead, she first became interested in bacteria that could help clean up the environment, especially looking at the extremophiles found in Soap Lake. An extremophile is a microorganism that lives in conditions of extreme temperature, acidity, alkalinity or chemical concentration. Living in such a hostile environment, Halanaerobium hydrogeninformans has metabolic capabilities under conditions that occur at some contaminated waste sites.

With Halanaerobium hydrogeninformans she expected to find an iron-reducing bacterium and describe a new species. What she found was a new species of bacterium that can produce hydrogen and 1, 3-propanediol under high pH and salinity conditions that might turn out to be valuable industrially. An organic compound, 1, 3-propenediol can be formulated into industrial products including composites, adhesives, laminates and coatings. It’s also a solvent and can be used as antifreeze.

The infrastructure isn’t in place now for hydrogen to replace gasoline as a fuel for planes, trains and automobiles. But if hydrogen becomes an alternative to gasoline, Halanaerobium hydrogeniformans mass-produced on an industrial scale, might be one solution – although it won’t be a solution anytime soon.

“It would be great if we got liters and liters of production of hydrogen,” Mormile says. “However, we have not been able to scale up yet.”

Mormile holds two patents for her work on the Soap Lake bacterium’s biohydrogen formation under very alkaline and saline conditions.


SOURCE  Missouri University of Science and Technology

By 33rd SquareEmbed

0 comments:

Post a Comment