Medicine
A newly developed bioreactor-on-a-chip could help meet growing need for blood transfusions worldwide. |
Scientists at Brigham and Women's Hospital (BWH) have developed a scalable, next-generation platelet bioreactor to generate fully functional human platelets in vitro. The work is a major biomedical advancement that will help address blood transfusion needs worldwide.
The study was published recently in the journal Blood.
"The ability to generate an alternative source of functional human platelets with virtually no disease transmission represents a paradigm shift in how we collect platelets that may allow us meet the growing need for blood transfusions," said Jonathan Thon, PhD, Division of Hematology, BWH Department of Medicine, lead study author.
"The ability to generate an alternative source of functional human platelets with virtually no disease transmission represents a paradigm shift." |
Related articles |
Blood cells, such as platelets, are made in bone marrow. The bioreactor—a device that mimics a biological environment to carry out a reaction on an industrial scale—uses biologically inspired engineering to fully integrate the major components of bone marrow, modeling both its composition and blood flow characteristics. The microfluidic platelet bioreactor recapitulates features such as bone marrow stiffness, extracellular matrix composition, micro-channel size, and blood flow stability under high-resolution live-cell microscopy to make human platelets.
Thon and Joseph Italiano, Jr., PhD are both founders of Platelet BioGenesis, a company that aims to produce donor-independent human platelets from human-induced pluripotent stem cells at scal
Application of shear forces of blood flow in the bioreactor triggered a dramatic increase in platelet initiation from 10 percent to 90 percent, leading to functional human platelets.
"By being able to develop a device that successfully models bone marrow represents a crucial bridge connecting our understanding of the physiological triggers of platelet formation to support drug development and scale platelet production," said senior study author Joseph Italiano, Jr., PhD, Division of Hematology, BWH Department of Medicine, and the Vascular Biology Program at Boston Children's Hospital.
In terms of next steps, the researchers would like to commence phase 0/I in human clinical trials in 2017.
"The regulatory bar is appropriately set high for blood products, and it is important to us that we show platelet quality, function and safety over these next three years since we'll likely be recipients of these platelets ourselves at some point," said Thon.
SOURCE Brigham and Women's Hospital via EurekAlert
By 33rd Square | Embed |
0 comments:
Post a Comment