Nanotechnology
Scientists have discovered that a sturdy 3D material, cadmium arsenide, mimics the electronic behavior of 2D graphene. The discovery could lead to new and faster types of electronic devices. |
Scientists have discovered a material that has the same extraordinary electronic properties as 2D graphene, but in a sturdy 3D form that should be much easier to shape into electronic devices such as very fast transistors, sensors and transparent electrodes.
The material, cadmium arsenide, is being explored independently by three groups, one of which includes researchers at the University of Oxford, SLAC, Stanford and Lawrence Berkeley National Laboratory who described their results in a paper published in Nature Materials.
“Now more and more people realize the potential in the science and technology of this particular material. This growing interest will promote rapid progress in the field – including the exploration of its use in functional devices and the search for similar materials,” said Yulin Chen of the University of Oxford, who led the research.
Crystal structure of Cd3As2 and Fermi surface measured by ARPES. Image Source - Liu et al. / Nature Materials |
"We think this family of materials can be a good candidate for everyday use and we’re working with theorists to see if there are even better materials out there." |
Their prediction proved correct, said Zhongkai Liu, the paper’s first author and a graduate student at SIMES, the Stanford Institute for Materials and Energy Sciences at SLAC. “The environmental stability of cadmium arsenide allows us to explore it very systematically, and makes it easier to study,” he said.
Related articles |
One such quest has been to find graphene-like materials that are three-dimensional, and thus much easier to craft into practical devices. Two other international collaborations based at Princeton University and in Dresden, Germany, have also been pursuing cadmium arsenide as a possibility. One published a paper on its results in an earlier issue of Nature Communications, and the other has posted an unpublished paper on the preprint server arXiv.
Chen’s group made samples of cadmium arsenide at Oxford and tested them at the Diamond Light Source in the United Kingdom and at Berkeley Lab’s Advanced Light Source.
“We think this family of materials can be a good candidate for everyday use,” Chen said, “and we’re working with theorists to see if there are even better materials out there. In addition, we can use them as a platform to create and explore even more exotic states of matter; when you open a door, you find there are many other doors behind it.”
SOURCE SLAC National Accelerator Laboratory
By 33rd Square | Embed |
0 comments:
Post a Comment