Simulation
Researchers using computer simulations have revealed a key mechanism in the replication process of influenza A. The work may help defend against future deadly pandemics. |
Treating influenza relies on drugs, such as Amantadine, that are becoming less effective due evolution of the virus. Now University of Chicago scientists have published computational results that may give drug designers the insight they need to develop the next generation of effective influenza treatment.
“It’s very hard to design a drug if you don’t understand how the disease functions,” said Gregory Voth, the Haig P. Papazian Distinguished Service Professor in Chemistry. Voth and three co-authors offer new insights into the disease’s functioning in the Proceedings of the National Academy of Sciences.
Amantadine is a bulky organic compound originally designed to treat influenza A by blocking proton flow through the M2 channel, one of the few proteins that are targets for antiviral therapies. “The proton flow is essential for influenza viral replication,” said Voth, who also is director of the Center for Multiscale Theory and Simulation. Unfortunately, subsequent mutations in different forms of the flu have changed the ability of Amantadine to bind to the M2 protein. “There’s a big, worldwide push to find new drugs that will block this or other influenza proteins,” Voth said.
"Computer simulation, when done very well, with all the right physics, reveals a huge amount of information that you can’t get otherwise." |
“Computer simulation, when done very well, with all the right physics, reveals a huge amount of information that you can’t get otherwise,” Voth said. “In principle, you could do these calculations with potential drug targets and see how they bind and if they are, in fact, effective.”
Related articles |
Scientists have, however, succeeded in experimentally producing mutations of different parts of the M2 protein. The UChicago team’s simulations of the protein’s dynamics not only agree with those experimental data, which validates the results, but also explains the effects of these mutations, one of which is a dominant cause of drug resistance.
To reach such significant conclusions, the UChicago team tapped the power of four high-performance computer clusters. Principal among these was the Midway high-performance computing cluster at the University’s Research Computing Center. The Midway cluster worked various aspects of the problem continually for an entire year under the watchful guidance of Ruibin Liang, a graduate student in chemistry and the study’s lead author.
But the team also needed clusters at the Texas Advanced Computing Center at the University of Texas at Austin, the San Diego Supercomputer Center at the University of San Diego, and the Department of Defense High Performance Computing Center in Vicksburg, Miss.
“This was a huge amount of work, so I used every resource available. Professor Voth devoted a lot of machine time to this project,” Liang said.
More work lies ahead for Voth and his team, including trying to make the simulation process run more quickly, explaining the effects of drug resistant mutations, and targeting other forms of influenza. According the Liang, the stage has been set and the work is underway to reveal the proton permeation mechanism in influenza B, another form of the flu that has a different M2 channel and is entirely resistant to drugs like Amantidine.
SOURCE University of Chicago
By 33rd Square | Embed |
0 comments:
Post a Comment