Robotics
SAFFiR, the Shipboard Autonomous Firefighting Robot, being developed by the U.S. Navy is intended to be capable of finding and suppressing shipboard fires and working seamlessly with human firefighters. |
The U.S. Naval Research Laboratory (NRL) Laboratory for Autonomous Systems Research (LASR), partner in the Navy's Damage Control for the 21st Century project (DC-21), recently hosted robotics research teams from the Virginia Polytechnic Institute and State University (Virginia Tech) and the University of Pennsylvania (Penn) to demonstrate the most current developments of advanced autonomous systems to assist in discovery, control, and damage control of incipient fires.
SAFFiR, the Shipboard Autonomous Firefighting Robot is intended to be capable of finding and suppressing shipboard fires and working seamlessly with human firefighters. The robot is tied to the T.H.O.R. robot that was developed for the DARPA Robotics Challenge, but didn't quite make it to the competition.
"SAFFiR is being designed to move autonomously throughout a ship to learn ship layout, interact with people, patrol for structural anomalies, and handle many of the dangerous firefighting tasks that are normally performed by humans." |
The previous version of SAFFiR
To mitigate these risks, NRL researchers at LASR and NRL's Navy Center for Applied Research in Artificial Intelligence (NCARAI), under direction and funding from the Office of Naval Research (ONR), are working with university researchers to develop advanced firefighting technologies for shipboard fires using humanoid robots, an effort led by the NRL Chemistry Division.
"As part of the Navy's 'leap ahead' initiative this research focuses on the integration of spatial orientation and the shipboard mobility capabilities of future shipboard robots," said Dr. Thomas McKenna, managing program officer, ONR Computational Neuroscience and Biorobotics programs. "The goal of this research is to develop the mutual interaction between a humanoid robotic firefighter and the rest of the firefighting team."
This highly specialized research, to promote advanced firefighting techniques, includes development of the novel robotic platform and fire-hardened materials (Virginia Tech), algorithms for perception and navigation autonomy (Penn), human-robot interaction technology, and computational cognitive models that will allow the robotic firefighter to work shoulder-to-shoulder and interact naturally with naval firefighters (NCARAI).
"These advancements complement highly specialized NRL research that focuses specifically on the human-robot interaction technology and shipboard-based spatial interrogation technology," said Alan C. Schultz, director of LASR and the Navy Center for Applied Research in Artificial Intelligence. "Developments made from this research will allow a Navy firefighter to interact peer-to-peer, shoulder-to-shoulder with a humanoid robotic firefighter."
The NRL LASR, where the artificial intelligence portion of the research is performed, hosted the consortium of university researchers to demonstrate their most current developments. The LASR facility allows the researchers from Virginia Tech and Penn to demonstrate, in a controlled environment, progress in the critical steps necessary for shipboard fire suppression using variants of their Shipboard Autonomous Firefighting Robot, or SAFFiR. In 2013, human-robot interaction technology and cognitive models, developed by NRL, were also demonstrated at the laboratory.
"The LASR facility, with its unique simulated multi-environments and state-of-the-art labs allows us to 'test out' our ideas before we go to the field." Schultz said. "In essence, our facility gives us a cost saving method for testing concepts and ideas before we go to the expense of field trials."
SAFFiR flexes it's trigger finger |
Related articles |
"Today's display demonstrates the integration of perception through multiple sensors, and of locomotion through biped walking," said Dr. Daniel Lee, director, General Robotics Automation, Sensing, Perception Lab (GRASP) and professor at the University of Pennsylvania. Tasks as humans we take for granted, such as standing and remaining upright, become increasingly complex with the addition of full body mobility required for walking and lifting. Dr. Brian Lattimer, associate professor at Virginia Tech's Department of Mechanical Engineering, additionally commented that what we are now seeing is the result of a multidisciplinary project combined to perform all the critical tasks necessary for fire suppression by a humanoid robot.
"In dark or smoke occluded and noisy environments found in shipboard firefighting conditions, tactile feedback—touch—is an important form of communication between human firefighters," said John Farley, project officer ex-USS Shadwell, NRL Chemistry Division. "Moving forward, the team will integrate NRL's human-robot interaction technology with the SAFFiR platform so that there is a greater focus on natural interaction with naval firefighters."
In the short term, however, to protect robotic mechanisms and electronics from intense heat, researchers at NRL's Advanced Materials Section have developed a class of light-weight, high temperature polyetheretherketone (PEEK)-like phthalonitrile-resin that can be molded to any shape and remain strong at temperatures up to 500 degrees Celsius. Later this year, the robotic teams are expecting to conduct shipboard trials onboard the Navy's only full-scale fire test ship, the ex-USS Shadwell, moored in Mobile, Ala.
SOURCE U.S. Naval Research Laboratory
By 33rd Square | Embed |
0 comments:
Post a Comment