Nanotechnology
Stanford engineers have developed an improved process for making flexible circuits that use carbon nanotube transistors, a development that paves the way for a new generation of bendable electronic devices. |
Engineers would love to create flexible electronic devices, such as e-readers that could be folded to fit into a pocket. One approach they are trying involves designing circuits based on electronic fibers, known as carbon nanotubes, instead of rigid silicon chips.
But reliability is essential. Most silicon chips are based on a type of circuit design that allows them to function flawlessly even when the device experiences power fluctuations. However, it is much more challenging to do so with carbon nanotube circuits (CNT's).
Now a team at Stanford University has developed a process to create flexible chips that can tolerate power fluctuations in much the same way as silicon circuitry.
"This is the first time anyone has designed a flexible CNT circuits that have both high immunity to electrical noise and low power consumption, " said Zhenan Bao, a professor of chemical engineering at Stanford with a courtesy appointment in Chemistry and Materials Science and Engineering.
Related articles |
In principle, CNTs should be ideal for making flexible electronic circuitry. These ultra thin carbon filaments have the physical strength to take the wear and tear of bending, and the electrical conductivity to perform any electronic task.
But until this recent work from the Stanford team, flexible CNTs circuits didn't have the reliability and power-efficiency of rigid silicon chips.
Here's the reason. Over time, engineers have discovered that electricity can travel through semiconductors in two different ways. It can jump from positive hole to positive hole, or it can push through a bunch of negative electronic like a beaded necklace. The first type of semiconductor is called a P-type, the second is called and N-type.
The challenge facing the Stanford team was that CNTs are predominately P-type semiconductors and there was no easy way to dope these carbon filaments to add N-type characteristics.
The PNAS paper explains how the Stanford engineers overcame this challenge. They treated CNTs with a chemical dopant they developed known as DMBI, and they used an inkjet printer to deposit this substance in precise locations on the circuit.
This marked the first time any flexible CNT circuit has been doped to create a P-N blend that can operate reliably despite power fluctuations and with low power consumption.
"This is the first time anyone has designed a flexible carbon nanotube circuits that have both high immunity to electrical noise and low power consumption." |
Bao has focused her research on flexible CNTs, which compete with other experimental materials, such as specially formulated plastics, to become the foundation for bendable electronics, just as silicon has been the basis for rigid electronics.
As a relatively new material, CNTs are playing catch up to plastics, which are closer to mass market use for such things as bendable display screens. The Stanford doping process moves flexible CNTs closer toward commercialization because it shows how to create the P-N blend, and the resultant improvements in reliability and power consumption, already present in plastic circuits.
Although much work lies ahead to make CNTs commercial, Bao believes these carbon filaments are the future of flexible electronics, because they are strong enough to bend and stretch, while also being capable of delivering faster performance than plastic circuitry.
"CNTs offer the best long term electronic and physical attributes," Bao said.
SOURCE Stanford University via EurekAlert
By 33rd Square | Embed |
0 comments:
Post a Comment