Major Cause of Age-Related Memory Loss Identified

Thursday, August 29, 2013

Major Cause of Age-Related Memory Loss Identified

 
Memory Loss
The results of a new study points to possible treatments and confirms distinction between memory loss due to aging and that of Alzheimer's.




A team of Columbia University Medical Center (CUMC) researchers, led by Nobel laureate Eric R. Kandel, MD, has found that deficiency of a protein called RbAp48 in the hippocampus is a significant contributor to age-related memory loss and that this form of memory loss is reversible.

The study, conducted in postmortem human brain cells and in mice, also offers the strongest causal evidence that age-related memory loss and Alzheimer’s disease are distinct conditions. The findings were published in the online edition of Science Translational Medicine.

The researchers have identified a protein—RbAp48—that, when increased in aged wild-type mice, improves memory back to that of young wild-type mice. In the image above, yellow shows the increased RbAp48 in the dentate gyrus.

“Our study provides compelling evidence that age-related memory loss is a syndrome in its own right, apart from Alzheimer’s. In addition to the implications for the study, diagnosis, and treatment of memory disorders, these results have public health consequences,” said Dr. Kandel, who received a share of the 2000 Nobel Prize in Physiology or Medicine for his discoveries related to the molecular basis of memory.

Related articles
The hippocampus, a brain region that consists of several interconnected subregions, each with a distinct neuron population, plays a vital role in memory. Studies have shown that Alzheimer’s disease hampers memory by first acting on the entorhinal cortex (EC), a brain region that provides the major input pathways to the hippocampus. It was initially thought that age-related memory loss is an early manifestation of Alzheimer’s, but mounting evidence suggests that it is a distinct process that affects the dentate gyrus (DG), a subregion of the hippocampus that receives direct input from the EC.

“Until now, however, no one has been able to identify specific molecular defects involved in age-related memory loss in humans,” said co-senior author Scott A. Small, MD, the Boris and Rose Katz Professor of Neurology and director of the Alzheimer’s Research Center at CUMC.

“The fact that we were able to reverse age-related memory loss in mice is very encouraging,” said Dr. Kandel. “Of course, it’s possible that other changes in the DG contribute to this form of memory loss. But at the very least, it shows that this protein is a major factor, and it speaks to the fact that age-related memory loss is due to a functional change in neurons of some sort. Unlike with Alzheimer’s, there is no significant loss of neurons.”

Finally, the study data suggest that RbAp48 protein mediates its effects, at least in part, through the PKA-CREB1-CBP pathway, which the team had found in earlier studies to be important for age-related memory loss in the mouse. According to the researchers, RbAp48 and the PKA-CREB1-CBP pathway are valid targets for therapeutic intervention. Agents that enhance this pathway have already been shown to improve age-related hippocampal dysfunction in rodents.

“Whether these compounds will work in humans is not known,” said Dr. Small. “But the broader point is that to develop effective interventions, you first have to find the right target. Now we have a good target, and with the mouse we’ve developed, we have a way to screen therapies that might be effective, be they pharmaceuticals, nutraceuticals, or physical and cognitive exercises.”

“There’s been a lot of handwringing over the failures of drug trials based on findings from mouse models of Alzheimer’s,” Dr. Small said. “But this is different. Alzheimer’s does not occur naturally in the mouse. Here, we’ve caused age-related memory loss in the mouse, and we’ve shown it to be relevant to human aging.”



SOURCE  Columbia University Top Image credit: Elias Pavlopoulos, PhD/Columbia University Medical Center


By 33rd SquareSubscribe to 33rd Square

0 comments:

Post a Comment