A team at Cold Spring Harbor Laboratory for the first time reveals the birth timing and embryonic origin of a critical class of inhibitory brain cells called chandelier cells, tracing the specific paths they take during early development into the cerebral cortex of the mouse brain. The work sheds light on the genetically programmed or "nature" part of the nature/nurture question of human development. |
A major step toward this great goal in neuroscience has been taken by a team led by Professor Z. Josh Huang, Ph.D., at Cold Spring Harbor Laboratory (CSHL). Today they publish research for the first time revealing the birth timing and embryonic origin of a critical class of inhibitory brain cells called chandelier cells, and tracing the specific paths they take during early development into the cerebral cortex of the mouse brain.
The research has been published online in the journal Science.
These temporal and spatial sequences are regarded by Huang as genetically programmed aspects of brain development, accounting for aspects of the brain that are likely identical in every member of a given species, including humans. Exceptions to these stereotypical patterns include irregularities caused by gene mutations or protein malfunctions, both of which are now being identified in people with developmental disorders and neuropsychiatric illnesses.
Image Source: Cold Spring Harbor Laboratory |
Huang, who has been on a decade-long quest to develop means of learning much more about the cortex’s inhibitory cells (sometimes called “interneurons”), points out that while they are far less numerous than the excitatory pyramidal cells all around them, chandelier cells play an indispensable role in balancing message flow and ultimately in determining the functional organization of excitatory neurons into meaningful groups.
This is all the more intriguing in the case of chandelier cells, Huang explains, because of their distinctive anatomy: one cell that can regulate the messages of 500 others in its vicinity is one that we need to know about if we want to understand how brain circuits work. Unlike other inhibitory cells, chandelier cells are known to connect with excitatory cells at one particular anatomical location, of great significance: a place called the axon initial segment (AIS) – the spot where a “broadcasting” pyramidal cell generates its transmittable message. To be able to interdict 500 “broadcasters” at this point renders a single chandelier cell a very important player in message propagation and coordination within its locality.
Because of the strategic importance of such cells throughout the cortex, it has been a source of frustration to neuroscientists that these and other inhibitory cells have been difficult to classify. Huang has pursued a strategy of following them from their places of birth in the emerging cortex.
“In addition to being surprised to discover that chandelier cells are born ‘late’—after other inhibitory cells, in a part of the cortex we didn’t know about,” says Huang, “our second surprise is that once born, these cells take a very stereotyped route into the cortex and assume very specific positions, in three cortical layers.” (Layers 2, 5 and 6). “This leads us to postulate that other specific cortical cell types also have specific migration routes in development.”
As Huang points out, his team’s new discoveries about chandelier cells have implications for disease research, since it is known that the number and connective density of chandelier cells is diminished in schizophrenia. Associations of the same type have recently been made in epilepsy.
“To know the identity of a cell type in the cortex is in effect to know the intrinsic program that distinguishes it from other cell types," Huang says. "In the broadest terms, we are learning about those aspects of the brain development that make us human. ‘Nurture,’ or experience, also has a very important role in brain development. Our work helps clarify the ‘nature’ part of the nature/nurture mystery that has always fascinated us.”
0 comments:
Post a Comment