Quantum Computers
Scientists have made two advances needed to create viable quantum computers. They have shown the ability to detect and measure both kinds of quantum errors simultaneously, as well as created a new, square quantum bit circuit design that is the only physical architecture that could successfully scale to larger dimensions. |
Scientists at IBM have unveiled two critical advances towards the realization of practical quantum computers. For the first time, they showed the ability to detect and measure both kinds of quantum errors simultaneously, as well as demonstrated a new, square quantum bit circuit design that is the only physical architecture that could successfully scale to larger dimensions.
With Moore's Law expected to run out of steam, quantum computing will be among the inventions that could usher in a new era of innovation across industries. Quantum computers promise to open up new capabilities in the fields of optimization and simulation simply not possible using today's computers. If a quantum computer could be built with just 50 quantum bits (qubits), no combination of today's supercomputers could successfully outperform it.
The IBM breakthroughs, described in the journal Nature Communications, show for the first time the ability to detect and measure the two types of quantum errors (bit-flip and phase-flip) that will occur in any real quantum computer. Until now, it was only possible to address one type of quantum error or the other, but never both at the same time. This is a necessary step toward quantum error correction, which is a critical requirement for building a practical and reliable large-scale quantum computer.
IBM's new and complex quantum bit circuit, based on a square lattice of four superconducting qubits on a chip roughly one-quarter-inch square, enables both types of quantum errors to be detected at the same time. By opting for a square-shaped design versus a linear array – which prevents the detection of both kinds of quantum errors simultaneously – IBM's design shows the best potential to scale by adding more qubits to arrive at a working quantum system.
Related articles |
For instance, in physics and chemistry, quantum computing could allow scientists to design new materials and drug compounds without expensive trial and error experiments in the lab, potentially speeding up the rate and pace of innovation across many industries.
For a world consumed by Big Data, quantum computers could quickly sort and curate ever larger databases as well as massive stores of diverse, unstructured data. This could transform how people make decisions and how researchers across industries make critical discoveries.
One of the great challenges for scientists seeking to harness the power of quantum computing is controlling or removing quantum decoherence – the creation of errors in calculations caused by interference from factors such as heat, electromagnetic radiation, and material defects. The errors are especially acute in quantum machines, since quantum information is so fragile.
"Up until now, researchers have been able to detect bit-flip or phase-flip quantum errors, but never the two together. Previous work in this area, using linear arrangements, only looked at bit-flip errors offering incomplete information on the quantum state of a system and making them inadequate for a quantum computer," said Jay Gambetta, a manager in the IBM Quantum Computing Group. "Our four qubit results take us past this hurdle by detecting both types of quantum errors and can be scalable to larger systems, as the qubits are arranged in a square lattice as opposed to a linear array."
"Quantum computing could be potentially transformative, enabling us to solve problems that are impossible or impractical to solve today." |
Two types of errors can occur on such a superposition state. One is called a bit-flip error, which simply flips a 0 to a 1 and vice versa. This is similar to classical bit-flip errors and previous work has showed how to detect these errors on qubits. However, this is not sufficient for quantum error correction because phase-flip errors can also be present, which flip the sign of the phase relationship between 0 and 1 in a superposition state. Both types of errors must be detected in order for quantum error correction to function properly.
The research team used a variety of techniques to measure the states of two independent syndrome (measurement) qubits. Each reveals one aspect of the quantum information stored on two other qubits (called code, or data qubits). Specifically, one syndrome qubit revealed whether a bit-flip error occurred to either of the code qubits, while the other syndrome qubit revealed whether a phase-flip error occurred. Determining the joint quantum information in the code qubits is an essential step for quantum error correction because directly measuring the code qubits destroys the information contained within them.
Because these qubits can be designed and manufactured using standard silicon fabrication techniques, the company anticipates that once a handful of superconducting qubits can be manufactured reliably and repeatedly, and controlled with low error rates, there will be no fundamental obstacle to demonstrating error correction in larger lattices of qubits.
Next, the Experimental Quantum Computing team is planning on making a similar lattice with eight qubits. “Thirteen or 17 qubits is the next important milestone,” Jerry Chow, Manager of Experimental Quantum Computing at IBM Research, told TechCrunch , because it’s at that point they’ll have the ability to start encoding logic into the qubits — which is when things start to get really interesting.
SOURCE Market Watch
By 33rd Square | Embed |
0 comments:
Post a Comment