Physics
Most of the laws of nature treat particles and antiparticles equally, but stars and planets are made of particles, or matter, and not antiparticles, or antimatter. That asymmetry, which favors matter to a very small degree, has puzzled scientists for many years. Physicists offer a possible solution to the mystery of the origin of matter in the universe. |
|
New research by UCLA physicists, published in the journal Physical Review Letters, offers a possible solution to the mystery of the origin of matter in the universe.
Alexander Kusenko, a professor of physics and astronomy in the UCLA College, and colleagues propose that the matter-antimatter asymmetry could be related to the Higgs boson particle, which was the subject of prominent news coverage when it was discovered at Switzerland's Large Hadron Collider in 2012.
Related articles |
The Higgs field "had to descend to the equilibrium, in a process of 'Higgs relaxation." |
The research also is highlighted by Physical Review Letters in a commentary in the current issue.
The 2012 discovery of the Higgs boson particle was hailed as one of the great scientific accomplishments of recent decades.
The Higgs boson was first postulated some 50 years ago as a crucial element of the modern theory of the forces of nature, and is, physicists say, what gives everything in the universe mass. Physicists at the LHC measured the particle's mass and found its value to be peculiar; it is consistent with the possibility that the Higgs field in the first moments of the Big Bang was much larger than its "equilibrium value" observed today.
The Higgs field "had to descend to the equilibrium, in a process of 'Higgs relaxation,'" said Kusenko, the lead author of the UCLA research.
SOURCE UCLA
By 33rd Square | Embed |
0 comments:
Post a Comment