Neuromorphic Computing
Researchers have demonstrated how neural networks and synapses in the brain can be reproduced, with optical pulses as information carriers, using special glass fibers made that are sensitive to light, known as chalcogenides. |
|
C
omputers that function like the human brain could soon become a reality thanks to new research using optical fibers made of specialized glass. The research, published in Advanced Optical Materials, has the potential to allow faster and smarter optical computers capable of learning and evolving.
Researchers from the Optoelectronics Research Centre (ORC) at the University of Southampton, UK, and Centre for Disruptive Photonic Technologies (CDPT) at the Nanyang Technological University (NTU), Singapore, have demonstrated how neural networks and synapses in the brain can be reproduced, with optical pulses as information carriers, using special fibres made from glasses that are sensitive to light, known as chalcogenides.
The project, funded under Singapore’s Agency for Science, Technology and Research (A*STAR) Advanced Optics in Engineering program, was conducted within The Photonics Institute (TPI), a recently established dual institute between NTU and the ORC.
Related articles |
"Scientists have sought ways to mimic the behaviour of the human brain, replacing neurons and our nervous system with electronic switches and memory. Now instead of electrons, light and optical fibres also show promise in achieving a brain-like computer.." |
However, compared to our biological systems, today’s computers are more than a million times less efficient. Simulating five seconds of brain activity takes 500 seconds and needs 1.4 MW of power, compared to the small number of calories burned by the human brain.
Using conventional fiber drawing techniques, microfibers can be produced from chalcogenide glass based on sulfur that possess a variety of broadband photo-induced effects, which allow the fibers to be switched on and off. This optical switching or light switching light, can be exploited for a variety of next generation computing applications capable of processing vast amounts of data in a much more energy-efficient manner.
Co-author Dr Behrad Gholipour explains: “By going back to biological systems for inspiration and using mass-manufacturable photonic platforms, such as chalcogenide fibers, we can start to improve the speed and efficiency of conventional computing architectures, while introducing adaptability and learning into the next generation of devices.”
By exploiting the material properties of the chalcogenides fibers, the team led by Professor Cesare Soci at NTU have demonstrated a range of optical equivalents of brain functions. These include holding a neural resting state and simulating the changes in electrical activity in a nerve cell as it is stimulated. In the proposed optical version of this brain function, the changing properties of the glass act as the varying electrical activity in a nerve cell, and light provides the stimulus to change these properties. This enables switching of a light signal, which is the equivalent to a nerve cell firing.
SOURCE University of Southampton
By 33rd Square | Embed |
0 comments:
Post a Comment