Mars
NASA's Mars Curiosity rover on Mars has produced new results—methane and other organic chemicals. Researchers do not know what caused the spikes, but the most intriguing possible explanation is "biological." |
|
NASA's Mars Curiosity rover has found a tenfold spike in methane, an organic chemical, in the atmosphere around it and detected other organic molecules in a rock-powder sample collected by the robotic laboratory’s drill.
The research is published in the journal Science.
"This temporary increase in methane—sharply up and then back down—tells us there must be some relatively localized source," said Sushil Atreya of the University of Michigan, Ann Arbor, and Curiosity rover science team.
"There are many possible sources, biological or non-biological, such as interaction of water and rock."
NASA's Mars rover Curiosity drilled into the rock target, "Cumberland," (shown above) during the 279th Martian day, or sol, of the rover's work on Mars and collected a powdered sample of material from the rock's interior.
Curiosity also detected different Martian organic chemicals in powder drilled from the rock, the first definitive detection of organics in surface materials of Mars. These Martian organics could either have formed on Mars or been delivered to Mars by meteorites.
Related articles |
"We will keep working on the puzzles these findings present," said John Grotzinger, Curiosity project scientist of the California Institute of Technology in Pasadena (Caltech). "Can we learn more about the active chemistry causing such fluctuations in the amount of methane in the atmosphere? Can we choose rock targets where identifiable organics have been preserved?"
"This first confirmation of organic carbon in a rock on Mars holds much promise. Organics are important because they can tell us about the chemical pathways by which they were formed and preserved. In turn, this is informative about Earth-Mars differences." |
Identifying which specific Martian organics are in the rock is complicated by the presence of perchlorate minerals in Martian rocks and soils. When heated inside SAM, the perchlorates alter the structures of the organic compounds, so the identities of the Martian organics in the rock remain uncertain.
"This first confirmation of organic carbon in a rock on Mars holds much promise," said Curiosity participating scientist Roger Summons of the Massachusetts Institute of Technology in Cambridge. "Organics are important because they can tell us about the chemical pathways by which they were formed and preserved. In turn, this is informative about Earth-Mars differences and whether or not particular environments represented by Gale Crater sedimentary rocks were more or less favorable for accumulation of organic materials. The challenge now is to find other rocks on Mount Sharp that might have different and more extensive inventories of organic compounds."
Researchers also reported that Curiosity's taste of Martian water, bound into lakebed minerals in the Cumberland rock more than three billion years ago, indicates the planet lost much of its water before that lakebed formed and continued to lose large amounts after.
SAM analyzed hydrogen isotopes from water molecules that had been locked inside a rock sample for billions of years and were freed when SAM heated it, yielding information about the history of Martian water. The ratio of a heavier hydrogen isotope, deuterium, to the most common hydrogen isotope can provide a signature for comparison across different stages of a planet's history.
"It's really interesting that our measurements from Curiosity of gases extracted from ancient rocks can tell us about loss of water from Mars," said Paul Mahaffy, SAM principal investigator of NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and lead author of a the report.
SOURCE NASA
By 33rd Square | Embed |
0 comments:
Post a Comment