Spinal Cord Injury
Four young men who have been paralyzed for years achieved groundbreaking progress -- moving their legs -- as a result of epidural electrical stimulation of the spinal cord, an international team of scientists reports today in the medical journal Brain.. |
Four young men who have been paralyzed for years achieved groundbreaking progress — moving their legs — as a result of epidural electrical stimulation of the spinal cord, an international team of life scientists reports today in the medical journal Brain.
The study, conducted by researchers from the University of Louisville, UCLA and the Pavlov Institute of Physiology, was funded in part by the Christopher and Dana Reeve Foundation and the National Institutes of Health.
"This is groundbreaking for the entire field and offers a new outlook that the spinal cord, even after a severe injury, has great potential for functional recovery." |
Related articles |
Now, three years later, the key findings documented in Brain detail the impact of epidural stimulation in a total four participants, including new tests conducted on Summers. Summers was paralyzed after being struck by a vehicle, and the other three participants were paralyzed in auto or motorcycle accidents.
What is revolutionary, the scientists said, is that the second, third and fourth participants — Kent Stephenson of Mt. Pleasant, Texas; Andrew Meas of Louisville, Kentucky; and Dustin Shillcox of Green River, Wyoming — were able to execute voluntary movements immediately following the implantation and activation of the stimulator.
The participants' results and recovery time were unexpected, which led researchers to speculate that some pathways may be intact post-injury and therefore able to facilitate voluntary movements.
"Two of the four subjects were diagnosed as motor and sensory complete injured with no chance of recovery at all," said lead author Claudia Angeli, a senior researcher with the Human Locomotor Research Center at Frazier Rehab Institute and an assistant professor at University of Louisville's Kentucky Spinal Cord Injury Research Center (KSCIRC). "Because of epidural stimulation, they can now voluntarily move their hips, ankles and toes. This is groundbreaking for the entire field and offers a new outlook that the spinal cord, even after a severe injury, has great potential for functional recovery."
In epidural stimulation, the electrical current is applied at varying frequencies and intensities to specific locations on the lumbosacral spinal cord, corresponding to the dense neural bundles that largely control the movement of the hips, knees, ankles and toes. With the participants, once the signal was triggered, the spinal cord reengaged its neural network to control and direct muscle movements.
When coupling the intervention with rehabilitative therapy, the impact of epidural stimulation intensified. Over the course of the study, the researchers noted that the participants were able to activate movements with less stimulation, demonstrating the ability of the spinal network to learn and improve nerve functions.
"We have uncovered a fundamentally new intervention strategy that can dramatically affect recovery of voluntary movement in individuals with complete paralysis, even years after injury," said Susan Harkema, a University of Louisville professor and rehabilitation research director at KSCIRC, Frazier Rehab Institute, director of the Reeve Foundation's NeuroRecovery Network and primary author of The Lancet article. "The belief that no recovery is possible and complete paralysis is permanent has been challenged."
Beyond regaining voluntary movement, the research participants have displayed a myriad of improvements in their overall health, including increases in muscle mass and regulation of their blood pressure, as well as reduced fatigue and dramatic improvements to their sense of well-being.
"This research brings up an amazing number of possibilities for how we can develop interventions that will help people recover movement they have lost," said Edgerton, a distinguished professor of integrative biology and physiology, neurobiology, and neurosurgery at UCLA and a co-author of the research. "The circuitry in the spinal cord is remarkably resilient. Once you get them up and active, many physiological systems that are intricately connected and that were dormant come back into play."
SOURCE UCLA
By 33rd Square | Embed |
0 comments:
Post a Comment