Space
Statistical analysis of all the NASA Kepler observations have indicated to astronomers at UC Berkeley and the University of Hawaii, Manoa that one in five stars like our sun have planets about the size of Earth and a surface temperature conducive to life. |
NASA’s Kepler space telescope, now crippled and its four-year mission at an end, nevertheless provided enough data to answer its main research question: How many of the 200 billion stars in our galaxy have potentially habitable planets?
Based on a statistical analysis of all the Kepler observations, astronomers at UC Berkeley and University of Hawaii, Manoa now estimate that one in five stars like the sun have planets about the size of Earth and a surface temperature conducive to life.
Given that about 20 percent of stars are sun-like, the researchers say, that amounts to several tens of billions of potentially habitable, Earth-size planets in the Milky Way Galaxy.
“When you look up at the thousands of stars in the night sky, the nearest sun-like star with an Earth-size planet in its habitable zone is probably only 12 light years away and can be seen with the naked eye. That is amazing,” said UC Berkeley graduate student Erik Petigura, who led the analysis of the Kepler data.
“With this result, we’ve come home, in a sense, by showing that planets like our Earth are relatively common throughout the Milky Way Galaxy.”
Petigura, Howard and Geoffrey Marcy, UC Berkeley professor of astronomy, will publish their analysis and findings this week in the online early edition of the journal Proceedings of the National Academy of Sciences.
“For NASA, this discovery is really important, because future missions will try to take an actual picture of a planet, and the size of the telescope they have to build depends on how close the nearest Earth-size planets are,” Howard said. “An abundance of planets orbiting nearby stars simplifies such follow-up missions.”
Related articles |
The team cautioned that Earth-size planets in orbits about the size of Earth’s are not necessarily hospitable to life, even if they reside in the habitable zone around a star where the temperature is not too hot and not too cold.
“Some may have thick atmospheres, making it so hot at the surface that DNA-like molecules would not survive. Others may have rocky surfaces that could harbor liquid water suitable for living organisms,” Marcy said. “We don’t know what range of planet types and their environments are suitable for life.”
Last week, however, Howard, Marcy and their colleagues provided hope that many such planets actually are rocky and could support liquid water. They reported that one Earth-size planet discovered by Kepler – albeit, a planet with a likely temperature of 2,000 Kelvin, which is far too hot for life as we know it – is the same density as Earth and most likely composed of rock and iron, like Earth.
“This gives us some confidence that when we look out into the habitable zone, the planets Erik is describing may be Earth-size, rocky planets,” Howard said.
To sort them out, Petigura and his colleagues are using the Keck telescopes in Hawaii to obtain spectra of as many stars as possible. This will help them determine each star’s true brightness and calculate the diameter of each transiting planet, with an emphasis on Earth-diameter planets.
What distinguishes the team’s analysis from previous analyses of Kepler data is that they subjected Petigura’s planet-finding algorithms to a battery of tests in order to measure how many habitable zone, Earth-size planets they missed. Petigura actually introduced fake planets into the Kepler data in order to determine which ones his software could detect and which it couldn’t.
The field of view of the Kepler space telescope, located in the constellation Cygnus, just above the plane of the Milky Way Galaxy. Kepler made precise measurements of the brightnesses of 156,000 stars for four years.
“What we’re doing is taking a census of extrasolar planets, but we can’t knock on every door. Only after injecting these fake planets and measuring how many we actually found could we really pin down the number of real planets that we missed,” Petigura said.
“If the stars in the Kepler field are representative of stars in the solar neighborhood, … then the nearest (Earth-size) planet is expected to orbit a star that is less than 12 light-years from Earth and can be seen by the unaided eye,” the researchers wrote in their paper. “Future instrumentation to image and take spectra of these Earths need only observe a few dozen nearby stars to detect a sample of Earth-size planets residing in the habitable zones of their host stars.”
SOURCE UC Berkeley
By 33rd Square | Subscribe to 33rd Square |
0 comments:
Post a Comment