Nanotechnology
Researchers studying the behavior of platinum particles immersed in hydrogen peroxide may have discovered a new way to propel microscopic machines. |
Researcgers studying the behavior of platinum particles immersed in hydrogen peroxide may have discovered a new way to propel microscopic machines.
The new mechanism is described in The Journal of Chemical Physics.
Micro-sized machines operate under very different conditions than their macro-sized counterparts. The high surface-area-to-mass ratio of tiny motors means they require a constant driving force to keep them going. In the past, researchers have relied on asymmetric chemical reactions on the surface of the motors to supply the force. For example, Janus motors, are spherical particles coated with a different material on each side. One of the sides is typically made of a catalyst like platinum, which speeds up the reaction that converts hydrogen peroxide into water and oxygen. When the Janus motor is immersed in hydrogen peroxide, oxygen bubbles form more quickly on the platinum side, pushing the sphere forward.
Related articles |
The researchers envision combining their new type of motors with existing motors to create easily controllable machines with a versatile range of motions.
Micro- and nano-sized machines may one day ferry drugs around the body or help control chemical reactions, but the Japanese team also sees a more fundamental reason to study such tiny systems.
“Micromotors may be used not only as a power source for micromachines and microfactories, but may also give us significant insight regarding mysterious living phenomenon,” said Daigo Yamamoto, a researcher in the Molecular Chemical Engineering Laboratory at Doshisha University and an author on the paper that describes the new motors.
SOURCE American Institute of Physics
By 33rd Square | Subscribe to 33rd Square |
0 comments:
Post a Comment