Moore's Law
An international team of scientists has discovered a new thermoelectric technique to use the energy from microprocessors that is normally dissipated as heat. Led by Jon Goff from Royal Holloway, University of London, they conducted a series of experiments on crystals of sodium cobaltate, using X-ray and neutron scattering experiments carried out at the European Synchrotron Radiation Facility (ESRF) and the Institut Laue-Langevin (ILL) in Grenoble. |
Scientists have now discovered a way of suppressing thermal conductivity in sodium cobaltate, opening new paths for energy scavenging. The results were recently published in Nature Materials.
Led by Jon Goff from Royal Holloway, University of London, the international team of scientists conducted a series of experiments on crystals of sodium cobaltate grown in the University’s Department of Physics.
X-ray and neutron scattering experiments were carried out at the European Synchrotron Radiation Facility (ESRF) and the Institut Laue-Langevin (ILL) in Grenoble, with calculations key to their interpretation performed using the UK’s national supercomputer facility HECToR.
Related articles |
Given the small size of the crystals studied, the ESRF was chosen to work in parallel with the ILL, combining inelastic X-ray and neutron scattering experiments in order to study and understand the mechanisms involved in obtaining low thermal conductivity in a thermoelectric material. "In general, this type of research is carried out with neutrons. However, the size of the samples was so small that the team called on the powerful X-rays available at the ESRF to extract useful signals ", says Michael Krisch, scientist on the ESRF's Inelastic Scattering beamline, and member of the research team.
The application of a temperature difference across a conductor causes charged carriers to diffuse from hot to cold regions, in a similar manner to the expansion of a gas upon heating. Mobile carriers leave behind their oppositely-charged immobile nuclei in the hot regions, giving rise to a thermoelectric voltage. This phenomenon is known as the Seebeck effect, and it enables the conversion of waste heat to useful electricity.
“The global target to reduce carbon emissions has brought research into thermoelectric materials centre stage,” said Goff from the Department of Physics at Royal Holloway. “If we can design better thermoelectric materials, we will be able to reduce the energy consumption of cars by converting waste heat in exhausts into electrical power, as well as cooling hot spots on computer chips using solid state refrigerators.”
Thermoelectric coolers are also used in air conditioners and in scientific equipment where a rapid response to changes in temperature is required. Energy harvesting is important in miniaturized electronic devices, including “systems on a chip”, and power recovery using this method is competitive for any off-grid electricity applications, including in space.
The corollary to the dramatic improvement in chip performance embodied in Moore’s Law is the exponential increase in power consumption. Indeed, the problem of the “power wall” is now acknowledged to be a likely first hard limit to Moore’s Law. A relatively modest enhancement of thermoelectric performance for oxides would create huge potential for environmentally friendly applications for cooling in electronic circuits.
Oxides are particularly attractive, since they are already extensively employed in integrated circuits and, ultimately, it should be possible to include them in the chip production process.
“The development of thermoelectric oxides offers an environmentally clean alternative to current materials that contain elements that are harmful, such as lead, bismuth or antimony, or are in limited supply, such as tellurium”, adds Goff.
SOURCE ESRF
By 33rd Square | Subscribe to 33rd Square |
0 comments:
Post a Comment