Regenerative Medicine
Researchers have succeeded in isolating adult human gum tissue from patients, grown more of it in the lab, and then combined it with the cells of mice that form teeth to grow hybrid human/mouse teeth containing dentine and enamel, as well as viable roots. With further work, it is projected that the same methods may be used to grow human teeth in the future. |
The research has been led by Professor Paul Sharpe, an expert in craniofacial development and stem cell biology at King’s College London’s Dental Institute.
Current implant-based methods of whole tooth replacement have failed to reproduce a natural root structure and as a consequence of the friction from eating and other jaw movement, loss of jaw bone can occur around the implant.
Research with the goal of producing bioengineered teeth (bioteeth) has largely focused on the generation of immature teeth (teeth primordia) that mimic those in the embryo that can be transplanted as small cell 'pellets' into the adult jaw to develop into functional teeth.
Despite the very different environments, embryonic teeth primordia can develop normally in the adult mouth and thus if suitable cells can be identified that can be combined in such a way to produce an immature tooth, there is a realistic prospect bioteeth can become a clinical reality.
Subsequent studies have largely focused on the use of embryonic cells and although it is clear that embryonic tooth primordia cells can readily form immature teeth following dissociation into single cell populations and subsequent recombination, such cell sources are impractical to use in a general therapy.
Sharpe says, "What is required is the identification of adult sources of human epithelial and mesenchymal cells that can be obtained in sufficient numbers to make biotooth formation a viable alternative to dental implants."
In this new work, the researchers isolated adult human gum (gingival) tissue from patients at the Dental Institute at King’s College London, grew more of it in the lab, and then combined it with the cells of mice that form teeth (mesenchyme cells). By transplanting this combination of cells into mice the researchers were able to grow hybrid human/mouse teeth containing dentine and enamel, as well as viable roots.
Sharpe concludes, "Epithelial cells derived from adult human gum tissue are capable of responding to tooth inducing signals from embryonic tooth mesenchyme in an appropriate way to contribute to tooth crown and root formation and give rise to relevant differentiated cell types, following in vitro culture. These easily accessible epithelial cells are thus a realistic source for consideration in human biotooth formation. The next major challenge is to identify a way to culture adult human mesenchymal cells to be tooth-inducing, as at the moment we can only make embryonic mesenchymal cells do this."
At this stage, the research is still in early stages, and the next step for the scientists is to create the teeth without the need to create mouse-human hybrid teeth.
SOURCE King's College London
By 33rd Square | Subscribe to 33rd Square |
0 comments:
Post a Comment