Type 1 Diabetes Cured In Dogs With One Treatment

Thursday, February 14, 2013

diabetes cure for dogs

 Medical Breakthrough
Researchers at the University of Barcelona have succeeded in completely curing type 1 diabetes in dogs with a single session of gene therapy. This is the first time that the disease has been cured in large animals, a fundamental step towards applying the therapy in humans. The study, based on introducing a "glucose sensor" into muscle, has been published in the journal Diabetes.
In a breakthrough for medical research, scientists from the University of Barcelona (UAB), led by Fàtima Bosch, have shown for the first time that it is possible to cure diabetes in large animals with a single session of gene therapy.

Published this week in the journal Diabetes, the principal journal for research on the disease, after a single gene therapy session, the dogs recover their health and no longer show symptoms of the disease. In some cases, monitoring continued for over four years, with no recurrence of symptoms.

The gene therapy procedure used in the experiment is minimally invasive. It consists of a single session of various injections in the animal's rear legs using simple needles that are commonly used in cosmetic treatments. These injections introduce gene therapy vectors, with a dual objective: to express the insulin gene, on the one hand, and that of glucokinase, on the other.

Glucokinase is an enzyme that regulates the uptake of glucose from the blood. When both genes act simultaneously they function as a "glucose sensor", which automatically regulates the uptake of glucose from the blood, thus reducing diabetic hyperglycemia (the excess of blood sugar associated with the disease).

As Fàtima Bosch, the head researcher, points out, "this study is the first to demonstrate a long-term cure for diabetes in a large animal model using gene therapy.”

This same research group had already tested this type of therapy on mice, but the excellent results obtained for the first time with large animals lays the foundations for the clinical translation of this gene therapy approach to veterinary medicine and eventually to diabetic patients.

The study was led by the head of the UAB's Centre for Animal Biotechnology and Gene Therapy (CBATEG) Fàtima Bosch, and involved the Department of Biochemistry and Molecular Biology of the UAB, the Department of Medicine and Animal Surgery of the UAB, the Faculty of Veterinary Science of the UAB, the Department of Animal Health and Anatomy of the UAB, the Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), the Children’s Hospital of Philadelphia (USA) and the Howard Hughes Medical Institute of Philadelphia (USA).

Dogs treated with a single administration of gene therapy showed good glucose control at all times, both when fasting and when fed, improving on that of dogs given daily insulin injections, and with no episodes of hypoglycemia, even after exercise. Furthermore, the dogs treated with adeno-associated vectors improved their body weight and had not developed secondary complications four years after the treatment. The study is the first to report optimal long-term control of diabetes in large animals.

This had never before been achieved with any other innovative therapies for diabetes. The study is also the first to report that a single administration of genes to diabetic dogs is able to maintain normoglycemia over the long term (more than 4 years). As well as achieving normoglycemia, the dogs had normal levels of glycosylated proteins and developed no secondary complications of diabetes after more than 4 years with the disease.

Future safety and efficacy studies will provide the bases for initiating a clinical veterinary trial of diabetes treatment for companion animals, which will supply key information for eventual trials with humans. In conclusion, this study paves the way for the clinical translation of this approach to gene therapy to veterinary medicine, and eventually to diabetic patients.



SOURCE  University of Barcelona

By 33rd SquareSubscribe to 33rd Square


Enhanced by Zemanta

0 comments:

Post a Comment