NASA scientists said Monday a scoop of sandy soil analyzed by the rover's chemistry lab contained water and a mix of chemicals, but not the complex carbon-based compounds considered necessary for microbial life. The latest findings reported at a meeting of the American Geophysical Union meeting in San Francisco came from an instrument aboard the Curiosity rover that baked the soil and analyzed the gases released. |
What NASA has revealed is that the Curiosity rover has used its full array of instruments to analyze Martian soil for the first time, and found a complex chemistry within the Martian soil. Water and sulfur and chlorine-containing substances, among other ingredients, showed up in samples Curiosity's arm delivered to an analytical laboratory inside the rover.
Detection of the substances during this early phase of the mission demonstrates the laboratory's capability to analyze diverse soil and rock samples over the next two years. Scientists also have been verifying the capabilities of the rover's instruments.
Curiosity is the first Mars rover able to scoop soil into analytical instruments. The specific soil sample came from a drift of windblown dust and sand called "Rocknest." The site lies in a relatively flat part of Gale Crater still miles away from the rover's main destination on the slope of a mountain called Mount Sharp.
The rover's laboratory includes the Sample Analysis at Mars (SAM) suite and the Chemistry and Mineralogy (CheMin) instrument. SAM used three methods to analyze gases given off from the dusty sand when it was heated in a tiny oven. One class of substances SAM checks for is organic compounds -- carbon-containing chemicals that can be ingredients for life.
Curiosity's APXS instrument and the Mars Hand Lens Imager (MAHLI) camera on the rover's arm confirmed Rocknest has chemical-element composition and textural appearance similar to sites visited by earlier NASA Mars rovers Pathfinder, Spirit and Opportunity.
Curiosity's team selected Rocknest as the first scooping site because it has fine sand particles suited for scrubbing interior surfaces of the arm's sample-handling chambers. Sand was vibrated inside the chambers to remove residue from Earth. MAHLI close-up images of Rocknest show a dust-coated crust one or two sand grains thick, covering dark, finer sand.
SAM tentatively identified the oxygen and chlorine compound perchlorate. This is a reactive chemical previously found in arctic Martian soil by NASA's Phoenix Lander. Reactions with other chemicals heated in SAM formed chlorinated methane compounds -- one-carbon organics that were detected by the instrument. The chlorine is of Martian origin, but it is possible the carbon may be of Earth origin, carried by Curiosity and detected by SAM's high sensitivity design.
"We used almost every part of our science payload examining this drift," said Curiosity Project Scientist John Grotzinger of the California Institute of Technology in Pasadena. "The synergies of the instruments and richness of the data sets give us great promise for using them at the mission's main science destination on Mount Sharp."
NASA's Mars Science Laboratory Project is using Curiosity to assess whether areas inside Gale Crater ever offered a habitable environment for microbes.
As for the speculation that has swarmed the discovery prior to the announcement, lead scientist John Grozinger had this to say: "We're doing science at the speed of science in a world that goes at the speed of Instagrams."
SOURCE NASA
By 33rd Square | Subscribe to 33rd Square |
0 comments:
Post a Comment