![]() |
| colorfulwallpaper.net |
ANS is the ability of living beings to estimate with reasonable accuracy the differences in sizes of different groups. Fish, for example, demonstrate an ability to join the larger of two schools without having to count. Getting a computer to do the same has until now, never been done.
To get their AI network to develop ANS, the researchers used a neural network that “learns” to recognize images and to respond based on what it’s seen. The system used mimics the biological processes of the eyes and brain, where one layer artificially recreates the retina with neurons that fire when exposed to pixels in an image and another that attempts to recreate some of the functions associated with brain processing.
After feeding the network 51,800 images, where each was a unique layout of rectangles of various sizes, the researchers found that the new images generated by the system began to demonstrate an awareness of the relative size of different groups without having to perform any counting. The new images the system created showed more artificial neurons firing when presented with images that showed groups with more elements in them.
In looking at how the system was able to learn to make educated guesses regarding relative group size, the team notes that the process appears to be very similar to that which occurs in the brains of living animals, including humans. Babies, for example have been found to be able to perform ANS, without any notion of counting.
Teaching computer systems to learn to use ANS is but one step towards creating machines that think rather than simply crunch numbers for us, and the hope is that one day, such systems can be put into robots to make them as useful as those we’ve seen in movies for decades.
www.physorg.com


Hello, please feel free to use what you need. All that we ask is provide a link back to us.
ReplyDeleteCheers,
33rd Square