Robotics
New research has looked at how cat and human mid-air orientation during activities like parkour, gymnastics and diving, for ways to make reactions to falling safer for robots, with less computational requirements. |
|
A cat always lands on its feet. At least, that’s how the adage goes. Karen Liu hopes that in the future, this will be true of robots as well.
To understand the way feline or human behavior during falls might be applied to robot landings, Liu, an associate professor in the School of Interactive Computing (IC) at Georgia Tech, delved into the physics of everything from falling cats to the mid-air orientation of divers and astronauts.
Related articles |
Not only did Liu and her team of Georgia Tech researchers simulate falls, they also studied the impact of landings.

In their experiments with a small robot consisting of a main body and two symmetric legs with paddles, the team compensated for the fact that a robot cannot move fast enough in a laboratory setting by creating a reduced-gravity environment using a tilted surface similar to an air hockey table outfitted with a leaf blower. Liu along with Jeffrey Bingham, Ravi Haksar, Jeongseok Lee and Jun Ueda, simulated the elements of a long fall and explored the possibility of a “soft roll” landing to reduce impact and damage to the robot.
In their work, the researchers found that a well-designed robot has the “brain” to process the computation necessary to achieve a softer landing, though current motor and servo technology does not allow the hardware to move quickly enough for cat-like impacts. Future research aims at further teaching a robot the skill of orientation and impact, a feat that falling humans cannot achieve but cats perform naturally.
"One day we will have the capability to build robots that can do this kind of highly dynamic motion, we also have to teach robots how to fall — and how to land, safely, from a jump or a relatively high fall." |
“Theoretically, no matter what initial position and initial speed we have, we can precisely control the landing angle by changing our body poses in the air,” says Ueda, an associate professor in the Woodruff School of Mechanical Engineering. “In practice, however, we have a lot of constraints, like joint limits or muscle strength, that prevent us from changing poses fast enough.”
“If we believe that one day we will have the capability to build robots that can do this kind of highly dynamic motion, we also have to teach robots how to fall — and how to land, safely, from a jump or a relatively high fall,” Liu said.
SOURCE Georgia Tech
By 33rd Square | Embed |