bloc 33rd Square Business Tools - brains 33rd Square Business Tools: brains - All Post
Showing posts with label brains. Show all posts
Showing posts with label brains. Show all posts

Tuesday, July 28, 2015

The Neural Efficiency Hypothesis Confirmed


Intelligence


Intelligence researchers have struggled with just how differences in intelligence are reflected in the human brain for many years. Now they have succeeded in studying further details relating to suspected functional differences in the brains of intelligent people.
 


The brains of more intelligent people are capable of solving tasks more efficiently, which is why these people have superior cognitive faculties, or as Elsbeth Stern, Professor for Research on Learning and Instruction at ETH Zurich, puts it: “when a more and a less intelligent person are given the same task, the more intelligent person requires less cortical activation to solve the task.” Scientists refer to this as the neural efficiency hypothesis, although it ceased being a hypothesis quite some time ago and is now accepted by experts as an undisputed fact, with ample evidence to support it.

The research has been published in the journal Intelligence.

Related articles

While working on her doctoral thesis in Stern's work group, Daniela Nussbaumer also found evidence of this effect for the first time in a group of people possessing above-average intelligence for tasks involving what is referred to as working memory. “We measured the electrical activity in the brains of university students, enabling us to identify differences in brain activity between people with slightly above-average and considerably above-average IQs,” explained Nussbaumer. Past studies conducted to identify the effect of neural efficiency have generally used groups of people that exhibit extreme variations in intelligence.

Facial memory tested

Psychologists define working intelligence as a person's ability to associate memories with new information as well as to adapt to changing objectives by filtering out information that has become irrelevant. The frontal lobe plays a pivotal role in these processes. In order to test these abilities, the ETH researchers asked 80 student volunteers to solve tasks of varying complexity on a computer.
One task, for example, was to determine whether individual letters or faces were part of a selection of letters or faces that had been shown to the subjects immediately beforehand.

An especially difficult task involved identifying letters and faces shown to the subjects during past runs of the test within a time limit. While the students were completing the tests, the researchers used electroencephalography (EEG) to measure their brain activity. For the results analysis, the researchers had the subjects take a conventional IQ test and then split them into two groups: one with slightly above-average IQs and another with well above-average IQs.

Neural efficiency for moderately difficult tasks

The researchers found no differences in brain activity in either group of subjects when they performed very easy or very difficult tasks. They did, however, see clear differences in the case of moderately difficult tasks. Stern attributes this to the fact that none of the subjects had any trouble whatsoever with the simple tasks and that the difficult tasks were cognitively demanding even for the highly intelligent subjects. In contrast, all subjects succeeded in solving the moderately difficult tasks, but the highly intelligent subjects required fewer resources to do so.

"When a more and a less intelligent person are given the same task, the more intelligent person requires less cortical activation to solve the task."


Stern uses the analogy of a more and less efficient car: “When both cars are travelling slowly, neither car consumes very much fuel. If the efficient car travels at maximum speed, it also consumes a lot of fuel. At moderate speeds, however, the differences in fuel consumption become significant.”

Intelligence is not a muscle

So is it possible to use EEG measurements to draw any direct conclusions about intelligence? Stern qualifies the findings: “If you want to learn something about intelligence, you have to perform a conventional IQ test, because these tests still provide the most reliable results,” she says. EEG and other brain activity readings are not precise enough to assess the intelligence of an individual. Still, using these methods may be an interesting way to study how different levels of intelligence are manifested in the brain.

The ETH researchers' intelligence study also suggests that it is impossible to “exercise” working memory. This has been a controversial issue among scientists in recent years because of contradictory findings in different studies. If subjects practice a certain task for a prolonged period, they improve with time. As Stern and her peers have now shown in their study, people who have practised certain tasks do not have any advantage over their unpracticed counterparts when confronted with new, yet similar tasks.


SOURCE  EHT Zurich


By 33rd SquareEmbed



Friday, May 3, 2013

Ray Kurzweil


 
Singularity
In a recent interview, futurist Ray Kurzweil talked about how the exponential trajectory for Google Now and Google Glass will bring the search engine even closer to our senses, by becoming blood-cell-sized nanomachines that float in your brain. We'll have to wait until the 2030's to try this out though.




With the release this week of the  Google Now, a voice-activated search assistant, for the on iPhone, iPad and other iOS devices this week and the building hype over Google Glass has been getting a lot of press.

Related articles
Search is becoming more intimate with voice-controls that seem to one-up Apple's Siri in terms of accuracy and speed and there is talk that Google Now will even anticipate your questions.

Now Google's head of engineering, Ray Kurzweil, has said that Google in the future will even be more ubiquitous.

"I think we're going to ultimately move beyond these little devices that are like looking at the world through a keyhole," the author of How to Create a Mind says. "You'll be online all the time. Google Glass is a solid first step."

"Ultimately these devices will be the size of blood cells, we'll be able to send them inside our brain through the capillaries, and basically connect up brain to the cloud," Kurzweil says. "But that's a mid-2030's scenario."

In Kurzweil's vision, these advances don't simply bring computers closer to our biological systems. Machines become more like us. "Your personality, your skills are contained in information in your neocortex, and it is information," Kurzweil says. "These technologies will be a million times more powerful in 20 years and we will be able to manipulate the information inside your brain."

Kurzweil denies that the searching and backup up of the brain itself is a bloodless pursuit, depleted of human emotion. "When I say that computers will reach human levels of understanding by the 2030s, I'm specifically talking about emotion. I'm talking about getting the joke, and being funny, and being sexy, and being loving."

He has a particular message for those who fear increasing sophisticated artificial intelligence.

"When computers can achieve these things it's not for the purpose of displacing us it's really to make ourselves smarter," Kurzweil says. "And smarter in the sense of being more loving... Really enhancing the things that we value about humans."


SOURCE  Marketplace

By 33rd SquareSubscribe to 33rd Square